Dynamic random survival forests using functional principal component analysis for the prediction of survival outcomes from time-varying predictors

Corentin Ségalas, Robin Genuer, Cécile Proust-Lima O csegalas

ISCB 2024

BORDEAUX POPULATION HEALTH Research Center - U1219

Statistical context

Longitudinal biomarkers

 $y_{ij} = y_i^\star(t_{ij}) + arepsilon_{ij}$ with $i=1,\ldots,n$ and $j=1,\ldots,n_i$

Statistical context

time since ICU entry time since ICU entry

time since ICU entry

Dynamic prediction: limits of existing approaches

Landmark approach (Van Houwelingen, 2007)

- Easy to implement
- Information loss
- Individual prediction only at landmark times used to build the model

Dynamic prediction: limits of existing approaches

Landmark approach (Van Houwelingen, 2007)

- Easy to implement
- Information loss
- Individual prediction only at landmark times used to build the model

Shared random effect joint models (Rizopoulos, 2012)

- Huge numerical integration
- Number of predictors limited
- \rightarrow Calibration-regression (but bias)

Random Forest framework (Breiman, 2001)

• Aggregation of binary trees (classification/regression)

- Aggregation of binary trees (classification/regression)
- A tree is built for each of the B bootstrap samples
- At each node, only a subset of predictors as candidate to split

- Aggregation of binary trees (classification/regression)
- A tree is built for each of the *B* bootstrap samples
- At each node, only a subset of predictors as candidate to split
- Can model complex relation between many predictors

- Aggregation of binary trees (classification/regression)
- A tree is built for each of the *B* bootstrap samples
- At each node, only a subset of predictors as candidate to split
- Can model complex relation between many predictors

- Aggregation of binary trees (classification/regression)
- A tree is built for each of the B bootstrap samples
- At each node, only a subset of predictors as candidate to split
- Can model complex relation between many predictors
- \longrightarrow Out-Of-Bag error, variable importance

Random Forest framework (Breiman, 2001)

- Aggregation of binary trees (classification/regression)
- A tree is built for each of the B bootstrap samples
- At each node, only a subset of predictors as candidate to split
- · Can model complex relation between many predictors
- \longrightarrow Out-Of-Bag error, variable importance

Random Survival Forest (Ishwaran et al., 2008)

- Extension of RF suited to survival outcome
- $\sqrt{}$ time-independent

 \times time-dependent

Dynamic Random Survival Forest

Core idea

Inside each node, summarize time-dependent predictors by time-independent summaries

Dynamic Random Survival Forest

Core idea

Inside each node, summarize time-dependent predictors by time-independent summaries

DynForest (Devaux et al., 2023)

Time-independent summaries: random effects from a mixed model

- \longrightarrow Parametric assumptions needed

Karhunen-Loève decomposition

We assume $y_i^*(t)$ a random process with mean function $\mu(t)$ and covariance $G(s, t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$ with eigenvalues λ_k and eigenfunctions ψ_k .

$$y_i^{\star}(t) = \mu(t) + \sum_{k=1}^{\infty} \xi_{ik} \psi_k(t) \quad i = 1, \dots, N, \quad t \in \mathbb{R}$$

with ξ_{ik} principal component scores, $E(\xi_{ik}) = 0$ and $Var(\xi_{ik}) = \lambda_k$.

Karhunen-Loève decomposition

We assume $y_i^*(t)$ a random process with mean function $\mu(t)$ and covariance $G(s, t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$ with eigenvalues λ_k and eigenfunctions ψ_k .

$$y_i^{\star}(t) = \mu(t) + \sum_{k=1}^{\infty} \xi_{ik} \psi_k(t) \quad i = 1, \dots, N, \quad t \in \mathbb{R}$$

with ξ_{ik} principal component scores, $E(\xi_{ik}) = 0$ and $Var(\xi_{ik}) = \lambda_k$.

Karhunen-Loève decomposition - truncated

We assume $y_i^*(t)$ a random process with mean function $\mu(t)$ and covariance $G(s, t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$ with eigenvalues λ_k and eigenfunctions ψ_k .

$$y_i^{\star}(t) = \mu(t) + \sum_{k=1}^{K} \xi_{ik} \psi_k(t) \quad i = 1, \dots, N, \quad t \in \mathbb{R}$$

with ξ_{ik} principal component scores, $E(\xi_{ik}) = 0$ and $Var(\xi_{ik}) = \lambda_k$.

Karhunen-Loève decomposition - truncated

We assume $y_i^*(t)$ a random process with mean function $\mu(t)$ and covariance $G(s, t) = \sum_{k=1}^{\infty} \lambda_k \psi_k(s) \psi_k(t)$ with eigenvalues λ_k and eigenfunctions ψ_k .

$$y_i^{\star}(t) = \mu(t) + \sum_{k=1}^{K} \xi_{ik} \psi_k(t) \quad i = 1, \dots, N, \quad t \in \mathbb{R}$$

with ξ_{ik} principal component scores, $E(\xi_{ik}) = 0$ and $Var(\xi_{ik}) = \lambda_k$.

PACE algorithm (Yao et al., 2005)

Fit for sparse and irregular functional data. For a chosen K:

- $\hat{\mu}(t)$ and $\hat{\psi}_k(t)$ over a time grid
- $\hat{\xi}_{ik}$ for $k = 1, \dots, K$ and for all i

Is FPCA robust to missing data?

Is FPCA robust to missing data?

Functional principal component analysis as an alternative to mixed-effect models for describing sparse repeated measures in presence of missing data

Corentin Ségalas^{*,1}, Catherine Helmer², Robin Genuer^{†,1} and Cécile Proust-Lima^{†,2}

¹Univ. Bordeaux, INSERM, INRIA, BPH, U1219, F-33000 Bordeaux, France ²Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France

Is FPCA robust to missing data?

Functional principal component analysis as an alternative to mixed-effect models for describing sparse repeated measures in presence of missing data

Corentin Ségalas^{*,1}, Catherine Helmer², Robin Genuer^{†,1} and Cécile Proust-Lima^{†,2}

¹Univ. Bordeaux, INSERM, INRIA, BPH, U1219, F-33000 Bordeaux, France ²Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France

Simulation study

FPCA is robust to MAR data under non pathological scenarios

Simulation code

Available on github @csegalas

Functional DynForest in R

Functional DynForest in R

timeVarModel	<- list(timeVar1	<pre>= list(PVEfpca</pre>	= 0.99,	nRegGrid =	50),
	timeVar2	<pre>= list(PVEfpca</pre>	= 0.99,	nRegGrid =	50),
	timeVar3	<pre>= list(PVEfpca</pre>	= 0.99,	nRegGrid =	30),
	timeVar4	<pre>= list(PVEfpca</pre>	= 0.99,	nRegGrid =	30))

timeVarModel <	<pre>- list(timeVar1 = list(PVEfpca = 0.99, nRegGrid = 50) timeVar2 = list(PVEfpca = 0.99, nRegGrid = 50) timeVar3 = list(PVEfpca = 0.99, nRegGrid = 30) timeVar4 = list(PVEfpca = 0.99, nRegGrid = 30)</pre>	, , ,
mb_fpcaDF <- D	<pre>ynForest(timeData = timeData_train, fixedData = fixedData_train, timeVar = "timeVariable", idVar = "ID", timeVarModel = timeVarModel, Y = Y, ntree = 500, nodesize = 5, minsplit = 5, cause = 1, ncores = 1, seed = 1234)</pre>	

timeVarModel <	<pre>- list(timeVar1 = list(PVEfpca = 0.99, nRegGrid = 50), timeVar2 = list(PVEfpca = 0.99, nRegGrid = 50), timeVar3 = list(PVEfpca = 0.99, nRegGrid = 30), timeVar4 = list(PVEfpca = 0.99, nRegGrid = 30))</pre>
mb_fpcaDF <- D	<pre>ynForest(timeData = timeData_train, fixedData = fixedData_train, timeVar = "timeVariable", idVar = "ID", timeVarModel = timeVarModel, Y = Y, ntree = 500, nodesize = 5, minsplit = 5, cause = 1, ncores = 1, seed = 1234)</pre>
00B_fpcaDF <- (compute_00Berror(mb_fpcaDF)

8/13

timeVarModel	<pre><- list(timeVar1 = list(PVEfpca = 0.99, nRegGrid = 50), timeVar2 = list(PVEfpca = 0.99, nRegGrid = 50), timeVar3 = list(PVEfpca = 0.99, nRegGrid = 30), timeVar4 = list(PVEfpca = 0.99, nRegGrid = 30))</pre>	
mb_fpcaDF <-	<pre>DynForest(timeData = timeData_train, fixedData = fixedData_train, timeVar = "timeVariable", idVar = "ID", timeVarModel = timeVarModel, Y = Y, ntree = 500, nodesize = 5, minsplit = 5, cause = 1, ncores = 1, seed = 1234)</pre>	
00B_fpcaDF <- compute_00Berror(mb_fpcaDF)		
VIMP_fpccaDF <- compute_VIMP(mb_fpcaDF)		

timeVarModel <- list(t t t t	<pre>imeVar1 = list(PVEfpca = 0.99, nRegGrid = 50), imeVar2 = list(PVEfpca = 0.99, nRegGrid = 50), imeVar3 = list(PVEfpca = 0.99, nRegGrid = 30), imeVar4 = list(PVEfpca = 0.99, nReaGrid = 30))</pre>	
mb_fpcaDF <- DynForest	<pre>(timeData = timeData_train, fixedData = fixedData_train, timeVar = "timeVariable", idVar = "ID", timeVarModel = timeVarModel, Y = Y, ntree = 500, nodesize = 5, minsplit = 5, cause = 1, promote = 1, coord = 1224)</pre>	
00B_fpcaDF <- compute_00Berror(mb_fpcaDF)		
VIMP_fpccaDF <- compute	e_VIMP(mb_fpcaDF)	
pred_fpcaDF <- predict	<pre>mb_fpcaDF, timeData = timeData_test, fixedData = fixedData_test, idVar = "ID", timeVar = "timeVariable", t0 = 100)</pre>	

Vasospasm data

Cerebral vasospasm

Narrowing of brain blood vessel, complication after a subarachnoid hemorrhage.

Hard to anticipate, and hard to treat if diagnosed too late.

Vasospasm data

Cerebral vasospasm

Narrowing of brain blood vessel, complication after a subarachnoid hemorrhage. Hard to anticipate, and hard to treat if diagnosed too late.

Vasospasm data from CHU de Bordeaux

- 201 patients
- 14 days of hourly follow-up after ICU admission
- 12 longitudinal biomarkers (BP, temperature, heart rate, etc.) + their standard deviation trend + 9 fixed variables (demographic, sex, tobacco, etc.). Some missing data.
- 46 vasospasms

Results on 500 trees

Results on 500 trees

Results on 500 trees

Discussion and perspectives

Functional DynForest

Nonparametric method to predict time-to-event outcome from longitudinal predictors

- handle informative missingness
- able to open the black box (variable importance)
- flexible: both FPCA and mixed-models; derivatives of longitudinal trajectories

Discussion and perspectives

Functional DynForest

Nonparametric method to predict time-to-event outcome from longitudinal predictors

- handle informative missingness
- able to open the black box (variable importance)
- flexible: both FPCA and mixed-models; derivatives of longitudinal trajectories

Future work

- a complete simulation study
- logrank assumption
- time computation and code cleaning
- different types of outcome (longitudinal data)

Acknowledgements

The DynForest family

Cécile Proust-Lima

Robin Genuer

Anthony Devaux

Funding

CARE project, Innovative Medicines Initiative 2 (No 101005077)

Resources

Bibliography

- Van Houwelingen, 2005, Dynamic Prediction by Landmarking in Event History Analysis, Scandinavian Journal of Statistics
- Rizopoulos, 2008, Joint Models for Longitudinal and Time-to-Event Data: With Applications in R, CRC Press
- Breiman, 2001, Random Forests, Machine Learning
- Ishwaran et al., 2008, Random Survival Forests, The Annals of Applied Statistics
- Devaux et al., 2023, Random survival forests with multivariate longitudinal endogenous covariates, Statistical Methods in Medical Research
- Yao et al., 2005, Functional Data Analysis for Sparse Longitudinal Data, Journal of the American Statistical Association

A Packages

- random survival forests: DynForest, survival
- functional data: fdapace, FunData
- data management and plotting: tidyverse, viridis

Thanks!

