
Dynamic random survival forests using
functional principal component analysis for
the prediction of survival outcomes from

time-varying predictors
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Statistical context

Longitudinal biomarkers
yij = y⋆i (tij) + εij with i = 1, . . . , n and j = 1, . . . , ni
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Statistical context

Longitudinal biomarkers
yij = y⋆i (tij) + εij with i = 1, . . . , n and j = 1, . . . , ni

Time-to-event outcome
λ(tij)
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Dynamic prediction: limits of existing approaches

Landmark approach (Van Houwelingen, 2007)

• Easy to implement

• Information loss

• Individual prediction only at landmark times used to build the
model

Shared random effect joint models (Rizopoulos, 2012)

• Huge numerical integration

• Number of predictors limited

−→ Calibration-regression (but bias)
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Random Survival Forest

Random Forest framework (Breiman, 2001)

• Aggregation of binary trees (classification/regression)

• A tree is built for each of the B bootstrap samples

• At each node, only a subset of predictors as candidate to split

• Can model complex relation between many predictors

−→ Out-Of-Bag error, variable importance

Random Survival Forest (Ishwaran et al., 2008)

• Extension of RF suited to survival outcome
√

time-independent × time-dependent
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Dynamic Random Survival Forest

Core idea

Inside each node, summarize
time-dependent predictors by
time-independent summaries

DynForest (Devaux et al., 2023)

Time-independent summaries: random effects from a mixed model
−→ Parametric assumptions needed
−→ Computational limitations
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Functional Principal Component Analysis

Karhunen-Loève decomposition

We assume y⋆i (t) a random process with mean function µ(t) and
covariance G (s, t) =

∑∞
k=1 λkψk(s)ψk(t) with eigenvalues λk and

eigenfunctions ψk .

y⋆i (t) = µ(t) +
∞∑
k=1

ξikψk(t) i = 1, . . . ,N, t ∈ R

with ξik principal component scores, E (ξik) = 0 and Var(ξik) = λk .

PACE algorithm (Yao et al., 2005)

Fit for sparse and irregular functional data. For a chosen K :

• µ̂(t) and ψ̂k(t) over a time grid

• ξ̂ik for k = 1, . . . ,K and for all i
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Functional Principal Component Analysis

Karhunen-Loève decomposition - truncated
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FPCA to summarise longitudinal data
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Is FPCA robust to missing data?

Simulation study

FPCA is robust to MAR data under non pathological scenarios

Simulation code

Available on github @csegalas
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Functional DynForest in R
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Vasospasm data

Cerebral vasospasm

Narrowing of brain blood vessel,
complication after a subarachnoid
hemorrhage.
Hard to anticipate, and hard to treat
if diagnosed too late.

Vasospasm data from CHU de Bordeaux

• 201 patients

• 14 days of hourly follow-up after ICU admission

• 12 longitudinal biomarkers (BP, temperature, heart rate, etc.)
+ their standard deviation trend + 9 fixed variables
(demographic, sex, tobacco, etc.). Some missing data.

• 46 vasospasms
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Results on 500 trees

OOB error
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Discussion and perspectives

Functional DynForest

Nonparametric method to predict time-to-event outcome from
longitudinal predictors

• handle informative missingness

• able to open the black box (variable importance)

• flexible: both FPCA and mixed-models; derivatives of
longitudinal trajectories

Future work

• a complete simulation study

• logrank assumption

• time computation and code cleaning

• different types of outcome (longitudinal data)
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