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Motivation: the 3C cohort and cognitive ageing

Longitudinal psychometric scores Time-to-event outcome
vii = v (ty) + i A(ty)

. ™
. - g
: £ 5
2 T H
g 20- 2 H
o o
f
15
o f
Eax 2
c B 2
5 0. g,
51 5 5
H £ £
& %
- £ g
3 s°
o . .
. . » M
I S 3 ] N
Time in the study Time in the study Time in the study Years.

1/19



Joint model: the shared random effect model

Two submodels linked through the random effects b;:

1. Mixed-effect model for each longitudinal biomarker

vilbi = Xui(ty) " B+ Zi(ty) " bi + &5
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Joint model: the shared random effect model

Two submodels linked through the random effects b;:

1. Mixed-effect model for each longitudinal biomarker

villbi = Xi(ty) ' B+ Zi(ty) " b + &

2. Survival model for time-to-event outcome

Xi(t, bi) = Xo(t) exp(X7i(t) "6 + (¢, b;) n)

Estimation challenging with too many longitudinal predictors

o Huge numerical integration

o Too many predictors in the survival model

o Too many parameters for simultaneous estimation
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DynForest: predictors into random survival forest

Predictors into RSF

y/ time-independent X time-dependent
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Statistical context: focus on the longitudinal trajectories

We observe:
e avisit tjj withi=1,...,Nand j=1,...,n;
e a longitudinal biomarker y;; = yi(t;) = y(t;j) +€j

e a missing indicator rj;, 1 if y;; is observed 0 if not
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e Misssing At Random p(rijly™, y°) = p(rjly®)
e Missing Not At Random p(rily™, y°) = p(rijly™, y°)

When r;; = 0 implies ry = 0 for all j < k < n;
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From functional data...

yij = yi(ty) = yi (ty) + €jj
y; realization of an unknown function f observed with noise on a
dense regular grid.
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Figure: Average daily temperature from Canadian Weather data,
Functional Data Analysis, Ramsay and Silverman, Springer 2005.
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..to sparse and irregular functional data

vij = yi(ty) = yi (tj) + &
y; realization of an unknown random function f observed with
noise on a sparse irregular grid.
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Figure: Sparse irregular functional data
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Principal Component Analysis

Classic PCA

Project the scatterplot (y;)j—=1,...n from R¥ to a lower dimensional
space with an orthogonal basis while maximizing the variability.
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Principal Component Analysis

Classic PCA

Project the scatterplot (y;)i=1,...n from RX to a lower dimensional
space with an orthogonal basis while maximizing the variability.

Data after PCA
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Functional Principal Component Analysis

Karhunen-Loéve decomposition:

)/l(t +Z€:k¢]k(t i=1...,N, teR

» 1 mean function
» ¢, orthonormal eigenfunctions of the covariance operator
> & principal component scores
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Functional Principal Component Analysis

Karhunen-Loéve decomposition:

yi(t) = () + > &wu(t) i=1,...,N, teR
k=1

» 1 mean function
» 1, orthonormal eigenfunctions of the covariance operator
» & principal component scores

i, ik and Py for k =1,..., K with PACE algorithm.

Prediction (for fixed K)
Plug-in i(t), £ and 1, (t) into the KL decomposition.

Robustness to dropout

What is FPCA behaviour with missing data?
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A parallel between FPCA and mixed models

FPCA Mixed models

Scores &k
Number of FPC
Mean function
FPC (t)

Non parametric

No inference tools

Unknown robustness to NA

Random effects bjy
Number of random effects
Marginal mean

Covariate Xi(t)

Parametric

Inference tools

Robustness to MAR data
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Simulation study design

Aim
Evaluate robustness of FPCA to dropout.

Data Generation

> N = 700 subjects

» each 1 or 2 year up to 12
» dropout of 30% or 60%
» MAR and MNAR

Estimand

yij for missing observations

Methods
FPCA, LMM and JM
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Simulation study design

Evaluate robustness of FPCA to dropout.

Data Generation
> N = 700 subjects > N = 200 subjects
» each 1 or 2 year up to 12 » each 1 or 2 year up to 12
» dropout of 30% or 60% » dropout of 30% or 60%
> MAR and MNAR » MAR and MCAR

9;j for missing observations fi(t) and &(t)

Methods

FPCA, LMM and JM FPCA
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Simulation study design: data generation mechanisms
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Simulation study design: missing data

Fixed
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Figure: 100 simulated longitudinal trajectories: fixed threshold and
increasing probability of dropout (MAR, MNAR and MCAR)
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Simulation study design: missing data
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Figure: 100 simulated longitudinal trajectories: fixed threshold and
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Simulation study design: missing data
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Simulation study design: missing data
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Simulation study results (1)

Fixed dropout (MAR) Dropout increasing with y (MAR) Dropout increasing with y (MNAR)
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Figure: Relative Mean Square Error for the prediction of the missing y
using FPCA, LMM and JM (only in the MNAR case).
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Simulation study results (2)

True versus estimated mean function True versus estimated PC1
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Figure: Estimated versus true mean function and functional principal
components (MCAR and MAR).
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Simulation study results (2)
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Figure: Estimated versus true mean function and functional principal
components (MCAR and MAR).
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Simulation study results (2)
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Figure: Estimated versus true mean function and functional principal
components (MCAR and MAR).
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Application on real data
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Application on real data

BVRT Shortened IST (30 sec)
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Figure: Mean function and 95%CI of LMM (spline) and FPCA (K = 2)

on cognitive markers from a 3C nested case-control study (N=330).
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Discussion and perspectives

» Longitudinal data as sparse and irregular functional data
» FPCA a nonparametric flexible approach (fdapace, MFPCA)
» FPCA is a descriptive approach, no inference

» Robust to dropout (MAR)
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Discussion and perspectives

» Longitudinal data as sparse and irregular functional data
» FPCA a nonparametric flexible approach (fdapace, MFPCA)
» FPCA is a descriptive approach, no inference

» Robust to dropout (MAR)

Use the estimated scores é,- as input of a predictive model.

Longitudinal Predicted survival
data outcome
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Forest Run versus Forrest Run

Call:
randomForest(formula = V4 ~ ., data = Ozone, na.action = na.omit)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 21.47889
% Var explained: 67.82

R 4
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