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Statistical framework

Observational study with:

▶ Yi a binary outcome

▶ Zi a binary exposure (1 if patient i treated, 0 if not)

▶ Xi a vector of baseline covariates (all potential confounders)

Average treatment effect on the treated (ATT)

ATT = E (Y 1
i |Zi = 1)− E (Y 0

i |Zi = 1)

Y 1
i and Y 0

i are potential outcomes
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Propensity score (PS)

Definition (Rosenbaum and Rubin, 1983)

For patient i ,
πi = P(zi = 1|xi )

estimated using a logistic regression or more advanced techniques
(Westreich et al., 2010)

Unbiased estimator of the true ATT: PS matching, PS
stratification, inverse probability of treatment weighting, etc.
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PS matching

Match each treated patient to at least one untreated patient based
on the distance between their PS.

▶ matching algorithm

▶ metric for the distance

▶ caliper whose size limits the difference between a pair

▶ number of non-treated patients matched to each treated
patient

▶ sampling with or without replacement

+ direct estimation of the ATT
− loss of power
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Multiple imputation and Rubin’s rules

How to obtain θ̂, estimate of the ATT, when X has missing data.

If missing at random (MAR): multiple imputation. (θ̂k)k are
aggregated using Rubin’s rules (Leyrat et al. 2019, Granger et al. 2019):

θ̂ =
1

m

m∑
k=1

θ̂k , V̂ar(θ̂) = W +

(
1 +

1

m

)
B

where

W =
1

m

m∑
k=1

V̂ar(θ̂k), B =
1

m − 1

m∑
k=1

(θ̂k − θ̂)2.
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Motivation and objectives

In a simulation study, over-coverage of the ATT was observed with
classic PS matching.

Literature insight (Reiter, 2008)

Rubin’s rules could lead to inflated variance when some patients
contributed to the imputation model but not to the analysis model

1. Does the discarding of unmatched individuals lead to
over-coverage when combining multiple imputation and
propensity score matching using Rubin’s rules?

2. Implement the Reiter’s correction in the context of propensity
score matching and assess its performance

6 / 20



Motivation and objectives

In a simulation study, over-coverage of the ATT was observed with
classic PS matching.

Literature insight (Reiter, 2008)

Rubin’s rules could lead to inflated variance when some patients
contributed to the imputation model but not to the analysis model

1. Does the discarding of unmatched individuals lead to
over-coverage when combining multiple imputation and
propensity score matching using Rubin’s rules?

2. Implement the Reiter’s correction in the context of propensity
score matching and assess its performance

6 / 20



Motivation and objectives

In a simulation study, over-coverage of the ATT was observed with
classic PS matching.

Literature insight (Reiter, 2008)

Rubin’s rules could lead to inflated variance when some patients
contributed to the imputation model but not to the analysis model

1. Does the discarding of unmatched individuals lead to
over-coverage when combining multiple imputation and
propensity score matching using Rubin’s rules?

2. Implement the Reiter’s correction in the context of propensity
score matching and assess its performance

6 / 20



Motivation and objectives

In a simulation study, over-coverage of the ATT was observed with
classic PS matching.

Literature insight (Reiter, 2008)

Rubin’s rules could lead to inflated variance when some patients
contributed to the imputation model but not to the analysis model

1. Does the discarding of unmatched individuals lead to
over-coverage when combining multiple imputation and
propensity score matching using Rubin’s rules?

2. Implement the Reiter’s correction in the context of propensity
score matching and assess its performance

6 / 20



Reiter’s rules

Reiter proposed to create r (instead of 1) complete datasets for
each parameter draw leading to a total of m× r complete datasets.

θ̂ =
1

mr

m∑
k=1

r∑
j=1

θ̂k,j =
1

m

m∑
k=1

θ̂k ,

V̂ar(θ̂) = W̃ +

(
1 +

1

m

)
B̃ −

(
1 +

1

r

)
U,

where

W̃ =
1

mr

m∑
k=1

r∑
j=1

V̂ar(θ̂k,j), B̃ =
1

m − 1

m∑
k=1

(
θ̂k − θ̂

)2
,

U =
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m(r − 1)

m∑
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r∑
j=1

(
θ̂k,j − θ̂k

)2
.
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Simulation study

▶ Aims: assess the impact of discarding patients between
imputation and estimation and evaluate Reiter’s rules in this
context

▶ Data generation mechanisms:
▶ N = 1, 000 datasets with 10, 000 patients
▶ three confounders x = (x1, x2, x3) ∼ N (0, I3)
▶ three levels of confounding: strong, moderate and weak
▶ 30%, 20% or 10% of treated patients
▶ around 15% of missing at random x2

▶ Estimands: ATT as an odds-ratio
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Simulation study

▶ Method implemented using R:
▶ multiple imputation using mice (trace argument)
▶ PS estimation using glm
▶ PS matching using MatchIt
▶ ATT estimation using glm.cluster from miceadds
▶ aggregation of the results using Rubin’s and Reiter’s rules

▶ Performance measures: relative bias, 95% confidence intervals
coverage rate (CR)
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Results: Rubin’s rules

Table: Results for the 1, 000 replicates of the ATT estimation using
Rubin’s rules

Confounding % of treated Rel. bias CR
Strong 30 -0.010 0.985
Strong 20 -0.001 0.996
Strong 10 0.005 0.999
Moderate 30 -0.001 0.994
Moderate 20 0.002 0.996
Moderate 10 0.004 1.000
Weak 30 -0.001 0.989
Weak 20 0.000 0.990
Weak 10 0.004 0.994
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Results: Reiter’s rules

Table: Results for the 1, 000 replicates of the ATT estimation using
Reiter’s rules

Confounding % of treated Rel. bias CR
Strong 30 0.014 0.937
Strong 20 0.000 0.950
Strong 10 0.000 0.950
Moderate 30 0.001 0.933
Moderate 20 0.001 0.956
Moderate 10 0.002 0.958
Weak 30 0.001 0.946
Weak 20 0.000 0.940
Weak 10 0.002 0.958
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Application: context

National Cancer Registry of the Office for National Statistics:

▶ 31, 351 patients diagnosed with cancer

▶ covariates: stage of the cancer, sex of the patient, patient’s
level of deprivation, comorbidity (Charlson score) and the
patient’s performance status

▶ 25% of performance and 10% of stage data were missing

We have studied the effect of age at diagnosis as a binary variable
(median as the cutoff) on the risk of surgery

▶ impact of (m; r) = (20; 10), (20; 30), (30; 10), (30; 30),
(50; 10) and (50; 30)

▶ impact of random fluctuation: 1604 and 1993 as seeds
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Application: results

point estimate variance estimate

O
R

−0.02 −0.01 0.00 0.01 0.02 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

(20;10)

(20;30)

(30;10)

(30;30)

(50;10)

(50;30)

Relative difference = (Reiter − Rubin)/Reiter

seed 1604 1993
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Discussion

▶ Combination of MI and PS matching using Rubin’s rules can
lead to inflated variance

▶ Reiter’s rules were able to correct the inflation

▶ Focus on PS matching only

▶ Easy to implement in R

▶ Computationally intense with bigger sample sizes (m × r
imputation)

▶ What about full matching?

Take home message

Be careful when combining multiple imputation and propensity
score matching
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Code

https://github.com/crsgls/psmatching

Thanks for your attention!
corentin.segalas@u-bordeaux.fr
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